Le plus petit insecte volant

2 03 2013

Le plus petit insecte volant est la megaphragma mymaripenne. Sa taille ne dépasse pas 200 μm soit un cinquième de millimètre, ce qui est comparable à l’envergure d’une paramécie.

Fairywasp
On remarque sur l’image que les ailes de la megaphragma mymaripenne sont bien différentes de celle des autres insectes volants (mouche, abeille, etc…). À de si petites échelles, faire battre une aile flexible ne permet pas de produire une force verticale et donc de voler. Pour se sustenter la megaphragma mymaripenne utilise donc un autre moyen, elle fait vibrer les cils qu’elle possède en bout d’aile. Ces vibrations permettent à cet insecte de se propulser dans l’air de la même manière que les vibrations d’un flagel de spermatozoïde lui permettent d’avancer dans un liquide.

Cette espèce intéresse particulièrement les neuroscientifiques qui cherchent à comprendre comment un si petit nombre de neurones suffisent à produire le contrôle des muscles nécessaires au vol.

Source :

Wikipédia – megaphragma mymaripenne. (#)

Discover – Tinny Wasp. (#)





Architecture animale

24 02 2013

Cette photo n’est pas la maquette d’une colonie spatiale pour accueillir les hommes du futur mais bien celle d’une habitation millénaire !
tschinkel_cast

Elle correspond au moulage d’une fourmilière par l’entomologiste américain Walter R. Tschinkel. Ce dernier utilise de l’aluminium en fusion qu’il coule dans l’entrée d’une fourmilière. Ce métal se solidifie en adoptant la forme des labyrinthes.
0tschinkel05

Ce procédé criminel pour les fourmis a l’avantage de mettre en avant leur don pour l’architecture.

Source :

Core77-Ants architecture. (#)





Le gel d’un lac

20 01 2013

Le gel d’un lac en hiver est toujours une expérience amusante. Qui ne s’est jamais amusé à tester l’épaisseur de la couche de glace pour savoir si elle pouvait supporter son propre poids ?

Route de glace

Bien que le gel d’un lac soit un phénomène relativement courant sous nos latitudes, que savons nous à son propos ? Pourquoi la glace se forme t-elle en surface ? Se forme t-elle de manière homogène sur tout le lac ?

Afin de répondre à ces questions il faut commencer par s’intéresser aux propriétés étonnantes de l’eau. Nous savons que ce composé est à l’équilibre sous forme solide en dessous de 0°C à pression atmosphérique. Nous savons aussi que l’eau sous forme solide est 10% moins dense que sa forme liquide. Cette propriété propre à l’eau explique que la banquise flotte sur les océans ou que nos glaçons reste à la surface d’un verre d’eau. Enfin une autre propriété remarquable de l’eau liquide est d’avoir une densité maximale pour une température de 4°C. C’est-à-dire que pour des températures inférieures et supérieures, celle ci sera moins dense que de l’eau à 4°C. La dépendance de la densité de l’eau avec sa température est représentée plus en détail sur le graphique ci dessous.

Densité_température

Généralement dans un lac toute l’eau n’est pas à la même température. D’après la propriété précédente cela implique qu’il existe des zones de densité différentes. Ces zones vont s’organiser dans la profondeur du lac, les plus denses migrant vers le fond et les moins denses vers la surface.

En été, lorsque la température extérieure est supérieure à 4°C, l’eau la plus chaude est aussi la moins dense et remonte vers la surface. A l’inverse la plus froide (au minimum à 4°C) repose au fond. Cette stratification de la température de l’eau en fonction de la profondeur est une expérience courante pour les baigneurs dans un lac ou une piscine (quoique souvent trompeuse si on test la température de l’eau à la main avant d’y plonger !).

En revanche en hiver quand la température devient inférieure à 4°C, l’eau la plus chaude (au maximum à 4°C) est aussi la plus dense et migre vers le fond du lac. A l’inverse l’eau la plus froide (au minimum à 0°C) remonte vers la surface. En hiver il y a donc une inversion de la stratification de la température dans le lac. Le baigneur ne se fera donc plus surprendre en trempant au préalable la main dans le lac !

baignade lac gelé

Au contact d’un atmosphère extérieure sous les 0°C, l’eau en surface va pouvoir se transformer en glace. Le  fait que la glace se forme en surface provient donc de la dépendance de la densité de l’eau avec la température. De plus cette situation est rendue stable par le fait que l’eau solide est plus légère que celle liquide. C’est-à-dire qu’une fois la glace formée, celle-ci va rester en surface pour constituer une couche épaisse.

Il faut noter que la plupart des composés connus ont, contrairement à l’eau, une forme solide plus dense que leur forme liquide. Si on imaginait un lac d’un autre liquide (huile, alcool, etc..), la glace y coulerait et celui-ci se solidifierait par le fond. Dans ce cas la plupart de la vie aquatique aurait fini congelée au cours de l’évolution…

Mais quelle énergie faut t-il au juste pour geler un lac ? L’eau liquide a besoin de 4,18 joules par gramme d’eau pour se refroidir de 1°C et de 334 joules par gramme pour se solidifier. Pour refroidir de 20°C à 4°C le lac Léman il faut donc environ 6×10 18 Joules, ce qui correspond à la consommation électrique annuelle de la Norvège ! Et afin de geler une couche de 10 cm de glace sur tout la surface du même lac il faut fournir à une eau à 0°C pas moins de 2×10 16 Joules.

Cette immense quantité d’énergie est délivrée à l’atmosphère extérieure qui est en contact avec la surface du lac. Le transfert de cette énergie n’étant pas instantané, on peut comprendre qu’un certain temps soit nécessaire pour geler le lac. Il faut savoir que le taux d’énergie échangée entre l’atmosphère et le lac est proportionnel à sa surface ainsi qu’à leur différence de température respective. Plus la différence de température est importante, plus le lac refroidira et gèlera rapidement. Aussi plus le lac aura une grande surface par rapport à son volume, plus le transfert d’énergie permettra de geler rapidement tout le lac. Une petite flaque dans la rue se glacera facilement lors d’une nuit froide alors qu’il faut plusieurs semaines défilées de grand froid pour faire prendre le lac Léman.

Ce rapport entre la surface d’échange d’énergie pour refroidir un volume d’eau nous permet aussi de déterminer les zones du lac les plus sensibles au gel. Aux bords du lac la profondeur y est plus faible qu’au centre, pour une même surface il correspond donc un volume d’eau sous-jacent plus faible. A condition que ces deux zones soient soumises aux mêmes conditions climatiques, elles reçoivent une même quantité d’énergie par unité de surface. La zone au bord ayant un volume d’eau plus petit à refroidir, elle gèlera en premier. Les lacs gelés prennent d’abord sur les rives et ensuite au centre, d’où le suspens en essayant de les traverser.

tumblr_mftdwce8XP1qas1mto3_1280

tumblr_mftdwce8XP1qas1mto1_1280

Les photographies précédentes ont été réalisées par le photographe Chip Phillips sur le lac Abraham dans l’Alberta. Ces colonnes de tâches blanches prises dans la couche de glace d’un lac sont dues à des plantes aquatiques. Dans la journée ces plantes relarguent du méthane, créant ainsi une bulle de gaz qui reste bloquée sous la surface de la glace et se trouve emprisonnée la nuit par la croissance de la couche de glace.

Sources :

Pourquoi la glace se forme t-elle d’abord en surface ? (#)

Science of the seasons. (#)

Lake Ice. (#)

Chip Phillips Photography. (#)





Mer gaufrée

27 12 2012

Lorsque une vague arrive parallèlement au rivage, celle ci se réfléchie dans la même direction. L’amplitude de la vague réfléchie dépend de la pente du fond marin à proximité du rivage. Lorsqu’une vague arrive obliquement au rivage, sa réflexion est envoyée dans une direction différente de celle incidente. La superposition des vagues incidentes et réfléchies produit une « mer gaufrée ». La géométrie du rivage et du fond marin de la Pointe des Baleine sur l’île de Ré rend cet effet particulièrement visible.

Mer gaufrée île Ré

Mer gaufrée. Pointe Des Baleines, Ile de Ré, France

Ce phénomène rend ce site tout à fait remarquable, si ce n’est pour les surfeurs !

Source : Wikipédia – Vague. (#)





Les flocons de neige

26 12 2012

Flocon styliséCette représentation stylisée nous évoque immédiatement un flocon de neige. Mais comment savons nous au juste que les flocons possèdent cette forme ?

L’observation d’un flocon de neige est rendue difficile de part sa petite taille  et sa fonte rapide au contact d’une surface chaude. A l’oeil nu il faut être extrêmement attentif afin de distinguer la géométrie d’un flocon de neige. C’est l’emploi du microscope qui va nous permettre de découvrir réellement la forme d’un flocon de neige.

Le premier scientifique a réaliser cette observation est l’anglais Robert Hooke. Celui-ci a passé plusieurs années à ajuster des lentilles optiques afin de mettre au point un microscope performant. En 1665 il publie Micrographia où il résume ses observations du monde microscopique tel que les cellules de plantes, les yeux de mouche et la forme sexagénaire des flocons de neige.

Il a ensuite fallu attendre 1885 pour que Wilson A. Bentley prenne les premiers clichés de flocon de neige. Ce fermier dans le Vermont remarqua immédiatement l’immense diversité des flocons de neige. Fasciné par cette variété il ne cessa de les photographier pour obtenir à la fin de sa vie plus de 5000 clichés.

First Snowflake Photos

Wilson A. Bentley Snowflakes

Sur ces clichés on remarque d’abord que le flocon de neige n’est pas un objet sphérique. Il présente une structure qui s’apparent à une fine dentelle. Malgré l’incroyable diversité de forme, il existe un dénominateur commun à tous ces flocons : la présence de six branches.

Comment pouvons nous comprendre ces observations ?

Si le flocon n’est pas sphérique c’est qu’il ne provient pas directement de la solidification d’une unique goutte d’eau. En réalité il se construit par conglomération de particules de glace lors de sa chute dans l’atmosphère terrestre.

A l’origine d’un flocon se trouve une minuscule goutte d’eau d’un rayon d’environ 10 µm. Bien que l’eau se transforme en glace à 0°C, ces gouttelettes d’eau congèlent à des températures bien inférieures à 0°C. En effet, il faut attendre que par hasard les molécules d’eau de cette goutte se retrouvent arrangées comme sur un réseau de glace pour que la transition liquide-solide se fasse. Eventuellement de fines particules solides facilitent ce processus.

Une fois ce coeur de glace formé, il va rencontrer les molécules d’eau sous forme vapeur en suspension dans l’atmosphère et les fixer à sa surface. Ainsi le flocon de neige croît jusqu’à atteindre une taille millimétrique. Et si les flocons de neige possèdent toujours six branches c’est que l’eau sous forme solide s’arrange selon une structure cristalline hexagonale comme on peut le voir sur le schéma suivant.

structure hexagonale glace

La première gouttelette d’eau va donc cristalliser sous la forme d’un hexagone et présenter six faces pour la croissance des branches.

Ensuite la croissance de ces branches dépend de l’humidité et de la température des régions de l’atmosphère traversées. Cela explique pourquoi chaque flocon de neige est unique : sa géométrie dépend de son vécu. En ceci un flocon de neige est un véritable messager du ciel qui nous raconte son histoire.

Flocon neige

Sources :

Snowcrystal.com. (#)

Robert in space – Les Flocons. (#)

Wikipédia – Snowflake. (#)





La microphotographie

10 11 2012

Tous les ans, le constructeur Nikon organise le concours Small world. Celui ci vise à récompenser les plus belles photographies faites au microscope optique. Les lauréats de la session 2012 vont à coup sûr vous surprendre. Qui sera dire ce que  le Dr. David Maitland à pu photographier pour obtenir ce cliché ?

Réponse : du sable corallien grossi cent fois. Ou encore celui de Rudolf Bauer ci dessous ?

Ce n’est rien d’autre que de la vitamine C vue à la lumière polarisée et grossie quatre fois. Plein d’autres surprises vous attendent sur le site du concours : Nikon’s small world.

 





Irident

21 10 2012

Si belles, les bulles de savon sont pourtant insaisissables. Leur vie est rendue très courte à cause d’une très grande fragilité et il n’est pas tâche facile que de les photographier. C’est pourtant la mission que c’est confié le photographe Fabian Oefner.

C’est le jeu de la lumière blanche sur les fines parois des bulles de savon qui les rend multicolores.

Grâce à un flash rapide et un temps de fermeture court il parvient même à capturer le moment où ces bulles explosent. Elles se fragmentent alors en de minuscules gouttelettes.

Source : Fabian Oefner – Irident. (#)